Chapter 4 Linear algebra

Theorem 4.1 (Fredholm Alternative) Let \(\mathbf{A}\in\mathbf{M}_{m,n}\left(\mathbb{R}\right)\), let \(\mathbf{x}\in\mathbb{R}^{n}\), and let \(\mathbf{b}\in\mathbb{R}^{m}\). Then, there are two mutually exclusive possibilities:

  1. The system \(\mathbf{A}\mathbf{x}=\mathbf{b}\) has a unique solution \(\mathbf{x}\) for each \(\mathbf{b}\). In particular, the system has the solution \(\mathbf{x}=\mathbf{0}\) for \(\mathbf{b}=\mathbf{0}\).
  2. The homogeneous equation \(\mathbf{A}\mathbf{x}=\mathbf{0}\) has exactly \(p\) linearly independent solutions \(\left\{ \mathbf{x}_{i}\right\} _{i=1}^{p}\) for some \(p\geq 1\).
Definition 4.1 Suppose that \(\mathbf{A}\in\mathbf{M}_{m,p}\left(\mathbb{R}\right)\), and suppose that \(\mathbf{B}\in\mathbf{M}_{p,n}\left(\mathbb{R}\right)\). Then, the Wronskian of \(\mathbf{A}\) and \(\mathbf{B}\) is \(\left\langle \mathbf{A},\mathbf{B}\right\rangle \coloneqq\mathbf{A}\mathbf{B}-\mathbf{B}\mathbf{A}\).
Definition 4.2 The range of a matrix \(\mathbf{A}\), denoted \(\text{range}\left(\mathbf{A}\right)\), is the space spanned by the columns of \(\mathbf{A}\).
Definition 4.3 The null space of a matrix \(\mathbf{A}\in\mathbf{M}_{m,n}\left(\mathbb{R}\right)\), denoted \(\text{null}\left(\mathbf{A}\right)\), is the set of vectors \(\mathbf{x}\in\mathbb{R}^{n}\) that satisfy \(\mathbf{A}\mathbf{x}=\mathbf{0}\).

Theorem 4.2 (Invertible Matrix Theorem) Let \(\mathbf{A}\in\mathbf{M}_{m,m}\left(\mathbb{R}\right)\). Then, the following are equivalent:

  1. \(\mathbf{A}^{-1}\) exists.
  2. \(\mathrm{rank}\left(\mathbf{A}\right)=m\).
  3. \(\mathrm{range}\left(\mathbf{A}\right)=\mathbb{R}^{m}\).
  4. \(\mathrm{null}\left(\mathbf{A}\right)=\mathbf{0}\).
Theorem 4.3 If \(\left\{ \mathbf{v}_{i}\right\} _{i=1}^{r}\) are eigenvectors that correspond to distinct eigenvalues \(\left\{ \lambda_{i}\right\} _{i=1}^{r}\) of an \(n\times n\) matrix \(\mathbf{A}\), then the set \(\left\{ \mathbf{v}_{i}\right\} _{i=1}^{r}\) is linearly independent.

Proof. Suppose that the set \(\left\{ \mathbf{v}_{i}\right\} _{i=1}^{r}\) is linearly dependent, and let \(p\in\left\{ 1,\ldots,r\right\}\) be the least index such that \(\mathbf{v}_{p+1}\) is a linear combination of the preceding (linearly independent) vectors \(\left\{ \mathbf{v}_{i}\right\} _{i=1}^{p}\). Then, there exist weights \(\left\{ c_{i}\right\} _{i=1}^{p}\) such that

\[ \mathbf{v}_{p+1}=c_{1}\mathbf{v}_{1}+\cdots+c_{p}\mathbf{v}_{p}=\sum_{i=1}^{p}c_{i}\mathbf{v}_{i}. \]

Left-multiplying each side of this equality by \(\mathbf{A}\) gives

\[ \mathbf{A}\mathbf{v}_{p+1}= \mathbf{A}\sum_{i=1}^{p}c_{i}\mathbf{v}_{i}= \sum_{i=1}^{p}c_{i}\mathbf{A}\mathbf{v}_{i} \implies\lambda_{p+1}\mathbf{v}_{p+1} =\sum_{i=1}^{p}c_{i}\lambda_{i}\mathbf{v}_{i}. \]

Noting that

\[ \lambda_{p+1}\mathbf{v}_{p+1}=\lambda_{p+1}\sum_{i=1}^{p}c_{i}\mathbf{v}_{i}=\sum_{i=1}^{p}c_{i}\lambda_{p+1}\mathbf{v}_{i}, \]

subtracting one equation from the other yields

\[ \lambda_{p+1}\mathbf{v}_{p+1}-\lambda_{p+1}\mathbf{v}_{p+1}=\sum_{i=1}^{p}c_{i}\lambda_{i}\mathbf{v}_{i}-\sum_{i=1}^{p}c_{i}\lambda_{p+1}\mathbf{v}_{i}\implies\mathbf{0}=\sum_{i=1}^{p}c_{i}\left(\lambda_{i}-\lambda_{p+1}\right)\mathbf{v}_{i}. \]

By definition, an eigenvector is nonzero, and by construction, the set \(\left\{ \mathbf{v}_{i}\right\} _{i=1}^{p}\) is linearly independent. Thus, all of the weights \(c_{i}\left(\lambda_{i}-\lambda_{p+1}\right)\) must be zero. Because the eigenvalues are distinct, it cannot be the case that any factor \(\lambda_{i}-\lambda_{p+1}\) is zero, so it follows that \(c_{i}=0\) for \(i\in\left\{ 1,\ldots,p\right\}\). But if this is the case, then

\[ \mathbf{v}_{p+1}=\sum_{i=1}^{p}c_{i}\mathbf{v}_{i}=\sum_{i=1}^{p}0\mathbf{v}_{i}=\mathbf{0}, \]

which contradicts the fact that \(\mathbf{v}_{p+1}\) is an eigenvector, hence nonzero. Thus, \(\left\{ \mathbf{v}_{i}\right\} _{i=1}^{r}\) cannot be linearly dependent, and therefore must be linearly independent.
Proposition 4.1 A scalar \(\lambda\) is an eigenvalue of an \(n\times n\) matrix \(\mathbf{A}\) if and only if \(\lambda\) satisfies the characteristic equation \(\det\left(\mathbf{A}-\lambda\mathbf{I}\right)=0\).
Proposition 4.2 An \(n\times n\) matrix \(\mathbf{A}\) has exactly \(n\) eigenvalues, including multiplicities.
Proof. The determinant of \(\mathbf{A}-\lambda\mathbf{I}\) for \(\lambda\in\mathbb{C}\) is a polynomial in \(\lambda\) of degree at most \(n\). It follows from the Fundamental Theorem of Algebra that the characteristic equation \(\det\left(\mathbf{A}-\lambda\mathbf{I}\right)=0\) has exactly \(n\) complex roots, including multiplicities. The previous proposition implies that each such root is an eigenvalue of \(\mathbf{A}\).
Theorem 4.4 A real, symmetric \(n\times n\) matrix \(\mathbf{A}\) has \(n\) real eigenvalues, including multiplicities.

Proof. Let \(\mathbf{x}\in\mathbb{C}^{n}\), and define \(q=\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{A}\mathbf{x}\). Observe that

\[\begin{align*} \bar{q} & =\overline{\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{A}\mathbf{x}} \\ & =\overline{\bar{\mathbf{x}}^{\mathsf{T}}}\bar{\mathbf{A}}\bar{\mathbf{x}} \\ & =\bar{\bar{\mathbf{x}}}^{\mathsf{T}}\mathbf{A}\bar{\mathbf{x}}\tag{$\mathbf{A}$ is real} \\ & =\mathbf{x}^{\mathsf{T}}\mathbf{A}\bar{\mathbf{x}} \\ & =\left(\mathbf{x}^{\mathsf{T}}\mathbf{A}\bar{\mathbf{x}}\right)^{\mathsf{T}}\tag{$\mathbf{x}^{\mathsf{T}}\mathbf{A}\bar{\mathbf{x}}$ is a scalar} \\ & =\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\left(\mathbf{x}^{\mathsf{T}}\right)^{\mathsf{T}} \\ & =\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{A}\mathbf{x}\tag{$\mathbf{A}$ is symmetric} \\ & =q, \end{align*}\]

hence \(q\) is real. Now suppose that \(\mathbf{x}\) is an eigenvector of \(\mathbf{A}\) with associated eigenvalue \(\lambda\). Then,

\[ q= \bar{\mathbf{x}}^{\mathsf{T}}\mathbf{A}\mathbf{x}= \bar{\mathbf{x}}^{\mathsf{T}}\lambda\mathbf{x}= \lambda\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{x}= \lambda \begin{bmatrix} \bar{x}_{1} & \bar{x}_{2} & \cdots & \bar{x}_{n} \end{bmatrix} \begin{bmatrix} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{bmatrix}= \lambda\left(\bar{x}_{1}x_{1}+\bar{x}_{2}x_{2}+\cdots+\bar{x}_{n}x_{n}\right). \]

Now, we can write some \(c\in\mathbb{C}\) as the sum of its real and complex parts, i.e., \(c=a+\iota b\), where \(a,b\in\mathbb{R}\), so that

\[ \bar{c}c=\overline{\left(a+\iota b\right)}\left(a+\iota b\right)=\left(a-\iota b\right)\left(a+\iota b\right)=a^{2}+\iota ab-\iota ab-\iota^{2}b^{2}=a^{2}+b^{2}. \]

\(a\) and \(b\) are real, so it follows that \(\bar{c}c\) is real, hence that each \(\bar{x}_{i}x_{i}\) is real. \(q\) is real, and \(\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{x}\) is real, so it follows that \(\lambda\) must also be real. From Proposition 4.2, \(\mathbf{A}\) has exactly \(n\) eigenvalues, and we have shown that each eigenvalue \(\lambda\) is real, proving the theorem.
Theorem 4.5 (Spectral Theorem) A non-degenerate matrix \(\mathbf{A}\in\mathbf{M}_{m,m}\left(\mathbb{R}\right)\) has a decomposition of the form \(\mathbf{A}=\mathbf{X}\boldsymbol{\Lambda}\mathbf{X}^{-1}\), provided that \(\mathbf{X}^{-1}\in\mathbf{M}_{m,m}\left(\mathbb{R}\right)\) exists, and where \(\boldsymbol{\Lambda}\) is a diagonal matrix whose entries are the eigenvalues of \(\mathbf{A}\).
Proof. PROOF GOES HERE
Definition 4.4 A unitary matrix \(\mathbf{U}\in\mathbf{M}_{m,m}\left(\mathbb{R}\right)\) has the property \(\mathbf{U}^{-1}=\mathbf{U}^{\mathsf{H}}\), where \(\mathbf{A}^{\mathsf{H}}\) denotes the Hermitian conjugate (conjugate transpose) of \(\mathbf{A}\).
Theorem 4.6 (Unitary Decomposition) A symmetric matrix \(\mathbf{A}\in\mathbf{M}_{m,m}\left(\mathbb{R}\right)\) admits the unitary diagonalization \(\mathbf{A}=\mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^{-1}\), where \(\mathbf{Q}\in\mathbf{M}_{m,m}\left(\mathbb{R}\right)\) is unitary.